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Large-scale collective motion emerging in a monolayer of vertically vibrated elongated particles is studied.
The motion is characterized by recurring swirls, with the characteristic scale exceeding several times the size
of an individual particle. Our experiments identified a small horizontal component of the oscillatory accelera-
tion of the vibrating plate in combination with orientation-dependent bottom friction �with respect to horizontal
acceleration� as a source for the swirl formation. We developed a continuum model operating with the velocity
field and local alignment tensor, which is in qualitative agreement with the experiment.
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I. INTRODUCTION

Large-scale collective behavior emerging in systems of
so-called self-propelled particles such as animals, birds, fish,
swimming microorganisms, molecular motors, and even cars
continues to attract enormous attention �1–14�. While vastly
different in nature, these self-propelled particles often show
similar behavior, e.g., long-range orientational order in two
dimensions and collective directed motion.

Recent quasi-two-dimensional experiments with swim-
ming bacteria �9,11� and vibrated anisotropic granular mate-
rials �15� exhibited surprising similarities between these two
very different systems: at high enough concentration of ele-
ments both systems show onset of large-scale motion occur-
ring in the form of recurring transient swirls and jets with the
characteristic scale considerably exceeding the size of the
individual element �15,16�. This similarity is puzzling be-
cause the bacteria used in Refs. �9,11� were polar particles
�they were propelled by the rotation of the helical flagella
without noticeable tumbling� and the anisotropic grains �e.g.,
rice, pins, etc.� were apparently apolar �15,16�.

Recurring swirls of swimming bacteria were studied in
recent experiments �9,11�. In Ref. �11�, the rodlike bacteria
Bacillus subtilis �4–5 �m long and about 1 �m wide� were
confined to a 2–3 �m thick free-hanging liquid film. These
microorganisms self-organized in spectacular dynamic struc-
tures with a characteristic scale exceeding the size of one
bacterium by an order of magnitude. The onset to collective
swimming occurs only when the number density of bacteria
exceeds the critical value; otherwise the bacteria swim indi-
vidually, and the correlation length of the corresponding ve-
locity field is of the order of one microorganism length, i.e.,
5 �m.

Visually similar swirls were also observed in recent ex-
periments with vibrated anisotropic granular materials �15�.
The authors of Ref. �15� suggested that the large-scale swirl-
ing behavior was related to “stray chirality” and defect mo-
tion. These swirls appeared to be very different from the
vortices observed in earlier experiments �13� with larger-
aspect-ratio particles and for larger plate acceleration. In
those earlier experiments, dense islands of almost vertical
rods were spontaneously formed within a thick layer of al-
most horizontal but orientationally disordered rods. As

shown in Refs. �13,17�, the quasivertical rods typically
moved in the direction of the tilt, i.e., they effectively be-
came polar self-propelled objects. Long-term evolution of
these islands leads to coarsening and creation of a single
vortex rotating in the direction given by the initial condi-
tions. In contrast, in the experiments of �15� the filling frac-
tion was much smaller, so only a monolayer of horizontal
rods could be formed. At such a small filling fraction, rods
do not reorient vertically; furthermore, they were confined to
almost horizontal orientation by a lid. Thus, the particles in
the experiment of �15� were vibrated symmetrically and were
essentially apolar.

In this paper we focus on the physical mechanism leading
to the onset of the swirling state in monolayers of vibrated
quasihorizontal granular rods. Our experiments unambigu-
ously identified the horizontal twisting component of bottom
plate oscillations as a primary source of the overall collective
grain motion. This periodic horizontal acceleration leads to
the vibrational transport of particles; however, anisotropy of
the particles provides the dependence of the friction force on
the particle orientation with respect to driving acceleration
and leads to the instability and swirl formation �18�. On the
basis of experimental observations we develop a mathemati-
cal model reproducing on a qualitative level salient features
of the experiment. Surprisingly, in a certain limit our model
for vibrated apolar grains driven by a symmetry-breaking
directional force is similar to that of polar bacteria in two
dimensions �19�, despite the obvious differences between
these two systems. This coincidence suggests that the hori-
zontal component of plate vibrations provides effective po-
larity to particles, and thus the similarity between swirling
patterns in swimming bacteria and vibrated rods is not super-
ficial but in fact is rooted in the underlying physics.

II. EXPERIMENTAL SETUP

Our experimental setup is similar to that described in
Refs. �20,21�. We placed a monolayer of almost horizontal
elongated grains in a 14 cm circular container vibrated ver-
tically by an electromagnetic shaker. The bottom plate of the
container was made of an optically flat silicon wafer. The
experiments were performed in the range of 2.5 to 6 accel-
erations of gravity g and frequencies from 120 to 150 Hz at
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atmospheric pressure. As granular media we used relatively
large particles: sushi rice �mean length of the order 4 mm,
aspect ratio 2–2.5�, intermediate jasmine rice �mean length
about 7 mm, aspect ratio 3.5–4�, longer and thinner Basmati
rice �mean length about 8 mm, aspect ratio about 6–8�,
nearly spherical mustard seeds �diameter about 2 mm�,
monodisperse stainless steel dowel pins �length 4 mm, as-
pect ratio 4�, and monodisperse steel tumbling media par-
ticles �length about 6 mm, aspect ratio 6, tapered ends�. We
did not use an upper confining lid since the vertical plate
oscillations �about 0.1 mm� were typically smaller than the
particle diameter, and gravity confined the particles in a
monolayer. Figure 1 shows examples of patterns observed in
these experiments with different types of rice.

To monitor all components of the plate acceleration we
used triaxial MMA7261Q accelerometers with sensitivity up
to 800 mV/g. Two accelerometers were attached at the same
radial distance from the center of the bottom plate and sepa-
rated by a 90° angle �see Fig. 2�. The amplitudes and phase
differences between various acceleration components were
monitored simultaneously by two EG&G lock-in amplifiers.
The visual information was obtained from a digital RedLake
camera suspended above the cavity. The camera resolution is
up to 1024�1024 pixels with the capability of storing up to
7000 full-resolution images.

III. BULK ROTATION AND SWIRLING

For a wide range of particles we observed overall rotation
of the pattern with the angular frequency � dependent on the
frequency f and the amplitude � of the plate acceleration.
Almost rigid-body rotation was observed for both spherical
mustard seeds and dowel pins �aspect ratio 4�. For jasmine
and sushi rice particles, rigid-body rotation was accompanied
by a significant swirling motion. The swirls typically showed
nonstationary behavior and often drifted around the con-
tainer. Well-pronounced large-scale swirling motion occurred
only at almost close-packed filling fraction �of the order of
85%�. Practically no swirling was observed at lower filling
fractions.

To quantify the collective motion of grains, we extracted
the velocity field from the sequences of snapshots using stan-
dard particle image velocimetry �23�. Figure 3 shows the
two-dimensional field of velocity �see also movies no. 2 and
no. 3 in Ref. �22��. One sees up to four recurrent vortices or
swirls with the characteristic size of about a quarter of the
container diameter persisting in the course of an experiment.

Figure 4 presents the average angular velocity of the
solid-body rotation component of the velocity field as a func-
tion of plate acceleration and frequency. As follows from the
figure, the rotation angular velocity � depends strongly on
the vibration frequency f and on the vertical acceleration �z.
The angular velocity has a pronounced resonance peak at f
�130 Hz and then changes sign at f =134 Hz. At this fre-
quency we observed surprising switching behavior: the an-

a b

FIG. 3. �a� Velocity field obtained by the particle-image veloci-
metry technique �23� of the experimental movie for the jasmine rice
at acceleration 2g and frequency f =142 Hz �parameters of Fig.
1�b��; �b� velocity field with overall solid-body rotation subtracted.
See also movies no. 2 and no. 3 in �22�.

FIG. 1. Snapshots of patterns observed in experiments with vertically shaken long grains: �a� sushi rice, vertical acceleration �=3g �g is
the acceleration of gravity�, frequency f =133 Hz; �b� jasmine rice, �=2g, f =142 Hz; �c� Basmati rice, �=3.2g, f =133 Hz. Vibrated
Basmati rice demonstrated a significant amount of local smectic order, while jasmine and sushi rice showed local weakly nematic order �on
the scale of 5–6 grains� and significant swirling. See also movie no. 1 in �22�. In all images filling fraction is about 85%.
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FIG. 2. �Color online� Sketch illustrating geometry of the
experiment.
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gular velocity randomly switches between positive and nega-
tive values �see Fig. 4, inset �b� and see also movie no. 4 in
Ref. �22��. Dependence on the vertical acceleration is non-
monotonic: the rotational velocity � initially increases with
the acceleration �z almost linearly, reaches a maximum value
at �z�4g, and finally decreases.

The overall rotation appears to be a bulk effect weakly
dependent on the boundary conditions at the lateral wall. To
verify that, we glued strips of rough sandpaper or a plastic
cable tie with asymmetric teeth to the sidewall, but it did not
affect the rotation in the bulk. Moreover, to exclude bound-
ary effects we performed studies of a highly dilute gas of
particles �ten particles only�. Even so, each individual par-
ticle showed a tendency to move along circular trajectories
�see discussion later�.

In order to pinpoint the underlying mechanism of the ro-
tation, we simultaneously measured, using lock-in amplifiers,
the amplitudes of three components of plate acceleration and
their relative phases at two locations at the edge of the plate
orthogonal with respect to its center �see Fig. 2�. The results
are presented in Fig. 5. The measurements show that in a
wide range of frequencies there was a significant component
of horizontal acceleration tangential to the container’s wall
�t. The amplitude of this tangential �or azimuthal� accelera-
tion significantly exceeds the amplitude of the normal accel-
eration �n. Moreover, the �t values almost coincide at the
two locations. These measurements demonstrate that in our
experiments, in a wide range of frequencies, the bottom plate
performed significant horizontal twisting vibrations around
the center, synchronized to much stronger vertical vibrations.
However, since the values of the tangential acceleration at
two different positions do not coincide exactly, a small linear
acceleration in a certain horizontal direction is present as
well.

Furthermore, the angular velocity of rotation, �, appears
to be correlated with the amplitude of azimuthal acceleration,
�t �compare Figs. 4 and 5�. These plots suggest that there is
a resonance for the twisting mode vibrations near the fre-

quency 130 Hz. Incidentally, near this frequency, the overall
rotation of grains changes direction. This change of the rota-
tion direction appears to be related to the rapid change of the
relative phase � between �z and �t near the resonant fre-
quency. The exact value of the resonant frequency appears to
depend on the amount of material loaded onto the vibrated
plate. While it did not change significantly for rice �the total
weight of a monolayer of rice in our experiment was
24 grams�, for heavy steel pins �the total weight of a mono-
layer of pins was about 200 grams� we noticed a significant
shift of the resonance.

Thus, our measurements are consistent with the conjec-
ture that the overall rotation of grains around the cavity cen-
ter is caused mainly by the phase shift between the horizon-
tal twisting and the vertical vibrations of the bottom plate
�24�; this mechanism is widely used in the design of vibro-
conveyors �25,26�. Note that, at large amplitude of plate vi-
bration, the amplitude and the direction of the rod transport
are determined by a complex interplay of both the amplitude
of vibrations and the phase shift between horizontal and ver-
tical vibrations �26� �see also �13��; however, at relatively
small amplitude of plate vibrations, the phases of the hori-
zontal and vertical components appear to be the dominant
factor.

Unlike the case of simple spherical or nearly spherical
grains, for elongated particles, in addition to the overall ro-
tation of the granular monolayer, we observed a significant
swirling motion with a characteristic spatial scale that is less
than the system size but still much larger than individual
grain size �see the movies in �22��. This swirling motion was
not observed in similar experiments with mustard seeds. In
contrast to Ref. �15�, in our experiments the swirling motion
was observed for several different types of rice and in a wide
range of parameters. It is probably explained by the fact that
in our system the amplitude of the horizontal acceleration
was larger than in that of �15�. A typical velocity pattern in
the swirling state after the removal of the solid-body rotation
is shown in Fig. 3�b�.
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FIG. 4. �Color online� Average angular velocity � as a function
of frequency f for vertical acceleration �z=3.1g for 23.8 g of jas-
mine rice grains. Inset �a�: � vs acceleration �z at f =142 Hz. Inset

�b�: total rotation phase � ,�= �̇ vs time for f =129 �solid line� and
134 �dashed line�. See movie no. 4 in �22�.
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In order to characterize the swirling motion we calculated
the corresponding root mean square �rms� averaged velocity
Vrms after the removal of the solid-body rotation component
of velocity:

Vrms = ���V − Vrot�2	 �1�

where Vrot=�r is the linear velocity of rotation at the radius
r from the rotation center. The average is taken over all sur-
face of the container. Accordingly, the Vrms value for pure
solid-body rotation is zero. The corresponding dependence of
Vrms on the vertical acceleration �z is shown in Fig. 6, inset.
In this figure, one can see a tendency toward increased swirl-
ing velocity Vrms with increase of acceleration. However, the
swirling velocity normalized by the rotational velocity �R
decreases with increase of the angular velocity �, which rep-
resents the magnitude of the driving force �see Fig. 6�. This
observation suggests that the relative strength of swirls is in
fact larger at small accelerations where the rotation velocity
is smaller.

IV. PROPERTIES OF A DILUTE GAS OF VIBRATED
ELONGATED PARTICLES

Solid-body rotation and swirling motion are of course col-
lective phenomena which emerge through the interaction of
many grains. However, the source of this motion must lie in
the dependence of the momentum transfer from the vibrated
plate to the elongated grains on the orientation of the grains.
In order to separate this effect from collisional interactions of
grains, we conducted experiments with a highly dilute sys-
tem �about 10–20 particles only�.

We recorded the positions and orientations of individual
grains following several long particle trajectories �see Figs.
7�a� and 7�b��. Due to the cylindrical geometry of our experi-
ment, the position of a particle is characterized in polar co-

ordinates by the radius r and polar angle �, and the orienta-
tion of the particle is characterized by the angle 	 with
respect to the radial direction �see Fig. 2�. Processing about
106 data points, we accumulated velocity distributions for
different grain orientations 	 with respect to the vector from
the center of the cavity to the grain position. These distribu-
tions show clear signs of anisotropy �see Fig. 8�. The most
obvious feature of these distributions is that their centers are
shifted toward positive values of V�, which indicates overall
counterclockwise rotation of grains around the cavity center.
This is also evident from the particle trajectories �Fig. 7�.
Furthermore, the widths of the distributions in radial and
azimuthal direction, and correspondingly the standard devia-
tions 
Vr

and 
V�
, are also different. For 	=0 �the particle is

oriented along the radius�, standard deviations 
V�
�
Vr

,
while for 	=� /2 the relation is opposite. We also found that
the distributions for 	=0 �radial orientation of grains� were
slightly tilted, which indicates the presence of asymmetry of
vibrational driving; however, the specific origin of this an-
isotropy is not clear. Figure 9 shows the dependence of the
standard deviations 
Vr

and 
V�
on the orientation angle 	.

This dependence is consistent with a simple model that the
grains are driven by a force with nonzero mean acting pre-
dominantly in the azimuthal direction, plus a strong isotropic
fluctuating component, and they are damped by an
orientation-dependent frictional force �V is the particle ve-
locity with respect to the container bottom�, which can be
cast in the following form:

B̂V = F0 + ��t� �2�

where B̂ is a 2�2 “friction” matrix, ��t� is the white noise
modeling the effect of vibration, and F0 is the driving force.
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FIG. 6. rms velocity of swirling motion, Vrms, normalized by the
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the radius of the container� for vibration frequency f =142 Hz vs the
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FIG. 7. �Color online� �a� Typical snapshot of several monomer
grains drifting on a vibrated plate at f =133 Hz and �z=3.5g. See
also movie no. 5 in �22� for particle trajectories. �b� Trajectories of
two grains extracted from the sequences of snapshots using custom
Interactive Data Language–based �27� image segmentation soft-
ware. �c�, �d� The same for catamaran particles in a similar vibration
regime, f =129 Hz, �z=3.5g. See also movie no. 6 in �22� for par-
ticle trajectories.
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On symmetry grounds the friction matrix B̂ in the first order
can be written as

Bij = 
0�ij + 
1�2ninj − �ij� �3�

where the coefficients 
0 and 
1 characterize isotropic and
anisotropic contributions, 
i , j�� 
� , � �, and n�,� are projec-
tions of the grain director on the direction of particle trans-
lation and the orthogonal direction, respectively. In our cir-
cular geometry when the driving force is directed
azimuthally, particles move predominantly in the azimuthal
direction, and n� =cos 	 ,n�=sin 	, so the friction tensor can
be written as

B̂ = 
0I + 
1
cos�2	� sin�2	�
sin�2	� − cos�2	�

� �4�

where I is the identity matrix. For positive 
1, this expres-
sion implies that friction is maximal when the particle is
translated along itself and minimal when it is translated in
the perpendicular direction. This expression will be used
later for the description of dense phase flows. In the dense
phase, the stochastic component of the driving force should
be strongly suppressed due to confinement by neighboring
grains, but the anisotropy of friction still would be a signifi-
cant factor in the selection of a flowing regime. Using Eqs.
�2� and �4�, for small anisotropy �
1�
0� one can derive the
standard deviations of velocity �
V�

,
Vr
� as functions of the

orientation 	:


V�
= 
0
1 −


1


0
cos�2	�� ,


Vr
= 
0
1 +


1


0
cos�2	�� �5�

which fit well with the experimental data �Fig. 9�.
The anisotropic friction should also lead to the depen-

dence of the mean azimuthal velocity V� on the orientational
angle 	. Assuming that the driving force F0 is oriented along
the azimuthal direction only, by balancing the driving force
to the friction force Eq. �2� we obtain

�V�	 =
F0


0

1 −


1


0
cos�2	�� + O�
1

2/
0
2� . �6�

However, we were not able to reliably confirm this depen-
dency in experiments with individual particles �see Fig. 9�a��
probably due to large velocity fluctuations �the standard de-
viation of the velocity is an order of magnitude greater than
the mean�. These large velocity fluctuations are likely related
to rolling and bouncing of individual grains, shadowing the
effect of the anisotropic sliding.

In order to reduce this effect and suppress at least the
rolling motion of grains, we glued pairs of particles together
to form “catamaran” objects �Figs. 7�c� and 7�d��. The results
of data processing for catamaran particles at the same con-
ditions �f =129 Hz,�z=3.5g� are shown in Figs. 8�c�, 8�d�,
and 9�b�. These data show evidence of mean velocity aniso-
tropy consistent with the anisotropic friction hypothesis, Eq.
�6� �see Fig. 9�b��. However, it can be fitted with Eq. �6� only
up to a certain phase shift �	�−0.34. Most likely this phase
shift originates from the fact that in our experiment plate
vibrations have both azimuthal and linear modes of horizon-
tal displacement �see Fig. 5�. Consequently, the driving force
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FIG. 8. �Color online� Velocity
distribution functions of isolated
particles �a�, �b� and catamarans
�c�, �d� for f =129 Hz and �z
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was not purely tangential �the ratio of ��n /�t � �0.2�, which
can skew the dependence of mean azimuthal velocity �V�	 vs
the orientational angle 	.

Figure 10 shows the azimuthal and radial velocity prob-
ability distribution functions calculated using data for all ori-
entations of grains. As one sees, the velocity distributions are
symmetric �
V�

�
Vr
� but strongly non-Gaussian, with no-

ticeably overpopulated tails, arising likely from the inelastic-
ity of particle collisions and the anisotropy of particle inter-
actions �28,29�.

V. MATHEMATICAL MODEL

In the hydrodynamic description the nematic ordering
of rice particles can be characterized by the symmetric trace-
less alignment tensor Q related to the nematic director
n= �cos 	̃ , sin 	̃� as follows

Q =
s

2

cos�2	̃� sin�2	̃�

sin�2	̃� − cos�2	̃�
� �7�

where s is the magnitude of the order parameter �s=0 means
total disorder, and s=1 corresponds to perfect nematic align-
ment�, and 	̃ is the mean grain orientation angle with respect
to an arbitrary fixed direction within a mesoscopic area. Here
we neglect the effects of the smectic ordering.

We are interested in time scales that are much larger than
the period of the plate vibrations, so we shall ignore the
vertical vibrations of individual grains and consider only
two-dimensional in-plane transport. According to Refs.
�3,30–34�, the generic equation describing the evolution of
the alignment tensor Q in two dimensions is of the form �35�

�Q

�t
+ �v · ��Q = �Q −

1

2
Tr�Q · Q�Q + D1�

2Q

+ D2��� · Q� + �Q − Q� �8�

where v is the hydrodynamic velocity, �= 1
2 ��v−�vT� is the

vorticity tensor �we assume that the flow of particles is in-
compressible�, D1,2 are the corresponding elastic constants
�compare with liquid crystals �30��, and ���−�c is the pa-
rameter controlling the nematic transition, which depends on
the grain packing density �. Here �c is the critical density of
the nematic phase transition. For the hydrodynamic velocity
v we have the following analog of the two-dimensional
Navier-Stokes equations:

�tv + �v · ��v = ��2v − �p − F f�Q,v� + F, � · v = 0,

�9�

where � is the shear viscosity of the granular flow �we ne-
glect for simplicity the anisotropy of the viscosity�, p is the
hydrodynamic pressure, and F is the driving �or conveying�
force due to mixed vertical and horizontal vibrations of the
plate �36�. Here F f�Q ,v� is the anisotropic friction force be-
tween particles and the bottom. Using our experiential results
for the friction force of catamaran particles, Eq. �2�, we as-
sume the following dependence of the friction force of the
velocity v and alignment tensor Q:

FIG. 9. Statistical characteristics of velocity distributions for
individual particles �a� and catamarans �b� for a run at f =129 Hz
and �z=3.5g: Average azimuthal velocity V� �solid black circles�
and standard deviations of V� and radial velocity Vr, 
V�

and 
Vr
, as

functions of the angle 	 between the particles and the radius vector
from the center of the cavity to the center of the particle. Dashed
lines show fits of the data by the sinusoidal functions expected for
driven particles with anisotropic friction force in the linear approxi-
mation �5� and �6�. For individual particles the best fit yields for the
standard deviations 
V�

=19.1+4.95 cos�2	� and 
Vr
=19.1

−4.95 cos�2	� �a�. For catamaran particles �b� the fit to experimen-
tal data yields 
V�

=12.1+2.33 cos�2	�, 
Vr
=12.1−2.33 cos�2	�

for the standard deviations and for the average azimuthal velocity
V�=0.87+0.19 cos�2�	−0.34��, respectively.
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F f�Q,v� = �
0 + 
1Q�v . �10�

In the following we focus on the limit of small anisotropy of
friction coefficient, i.e., 
1�
0. In our experiment, the hori-
zontal plate vibrations have predominantly the azimuthal
component. To simplify the calculations we consider the lim-
iting case of a very large container and introduce a local
rectangular coordinate system instead of the cylindrical one.
Then we choose the x direction along the horizontal compo-
nent of plate acceleration, �x, which we assume coincides
with the direction of the driving force F. Since the tensor Q
has only two independent variables in two dimensions, it is
useful to introduce a quasivector of local orientation

� = ��x,�y� � �Qxx,Qxy� =
s

2
�cos 2	̃,sin 2	̃� , �11�

where the angle 	̃ is now between the director and the ori-
entation of the driving force F.

We further assume that the hydrodynamic velocity v is
always close to the uniform translation velocity v0
=
0

−1F0x0 �x0 is a unit vector in the x direction which we
choose to coincide with the direction of the mean driving
force�. Since 
1�
0, we can rewrite the hydrodynamic
equation �9� in the form

�tv + �v · ��v = ��2v − �p − 
0v + �F0� + O��2� �12�

where �=
1 /
0 is a small parameter. Equation �8� in the
same approximation can be rewritten as

��

�t
+ �v · ��� = �� − ���2� + D1�2� + D2��� · �� + �z0 � � ,

�13�

where �= ��yvx−�xvy� is the vorticity component directed
along the vertical coordinate z, z0 is a unit vector in the
z-direction.

In order to exclude pressure we take the curl of Eq. �12�
and obtain the equation for the vorticity

�t� + �v · ��� = ��2� − 
0� + F0���y�x − �x�y� . �14�

Equations �13� and �14� form a closed system of equa-
tions.

Uniform transport of particles corresponds to the station-
ary solution �x=�0, �y =0, vy =0, vx=v0= �F0+F0��0� /
0, p
=const, and ��0 � =��. Here �0 is the magnitude of the order
parameter characterizing local nematic order ��0=0 corre-
sponds to a disordered packing, and ��0 � =�� corresponds to
the aligned nematic state�.

Now we examine the stability of this uniformly moving
state to a periodic modulation with wave vector parallel to
F0, since oblique perturbations have a smaller growth rate.
Substituting the perturbed solution ��x ,�y ,��= ��0 ,0 ,0�
+ ��̃x , �̃y ,�̃�exp��t+ ikx� into the linearized Eqs. �13� and
�14� we obtain after simple algebra

��̃x = − ikv0�̃x − 2�0
2�̃x − �D1 + D2�k2�̃x, �15�

��̃y = − ikv0�̃y − �̃�0 − D1k2�̃y , �16�

��̃ = − ikv0�̃ − �k2�̃ − 
0�̃ − ikF0��̃y . �17�

Thus, the equation for �x splits off and we need to deal with
only equations for �y ,�. They yield the matrix equation

det
− D1k2 − ikv0 − � , − �0

− ikF0� , − 
0 − �k2 − ikv0 − �
� = 0.

�18�

The roots of the characteristic polynomial are given by

�1,2 =
1

2

− �D1 + ��k2 − 
0 − 2ikv0

± ���D1 − ��k2 − 
0�2 − 4ik�0F0�� . �19�

The instability occurs in a finite range of wave numbers if
the parameter F0� is greater than some critical value. The
eigenmode corresponding to the instability has the form of
periodic undulations of the local orientation accompanied by
the periodic shear. The onset of instability can be obtained in
the long-wavelength limit k→0. Then Eq. �19� yields �using
��0�2=��

Re � = 
2F0
2�2�


0
3 − D1�k2 + O�k4� . �20�

This equation produces the threshold for the onset of long-
wave instability,

2F0
2�2� � 
0

3D1. �21�

Thus the instability threshold is controlled by the value of
the elastic constant D1 and the friction parameter 
0, which
depend on the shape and the aspect ratio of the particles.

The maximum growth rate occurs at a certain wave num-
ber km which is a function of the model parameters. The
selected wave number km is easy to calculate in the limit of
relatively large value of the speed v0. Expanding Eq. �19� for
�F0� � � ��D1+��k2−
� we obtain

Re��� �
1

2
�− �D1 + ��k2 − 
0 + �2�k�F0���� + O�1/�F0�� .

�22�

Then from Eq. �22�

kM
3/2 =

�2F0���

4�D1 + ��
. �23�

The associated length scale L�1/km determines the charac-
teristic size of the swirls. In order to study the dynamics
beyond the linear instability we performed numerical studies
of Eqs. �13� and �14� in a periodic domain. A snapshot of a
typical simulation in the parameter range corresponding to
the linear instability is shown in Fig. 11. Figure 11�a� shows
the director field n and Fig. 11�b� shows the velocity field v.
As seen from the figure, indeed the model exhibits an array
of swirls, in agreement with the experiment.

In order to compare our results with the experiment more
quantitatively, we calculated numerically the value of the
rms velocity of swirling motion, Vrms, as a function of the
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driving force F0. We have found that, as in the experiment,
the value of Vrms increases with F0 �in the experiment of
course we do not have direct measurements of the driving
force, but we can infer it from measuring the overall rotation
rate of grains around the cavity�. Moreover, in a qualitative
agreement with the experiment, the value of Vrms divided by
the parameter F0� decreases with the driving F0, similar to
the decrease of the normalized Vrms with solid-body rotation
frequency � �compare Figs. 6 and 12�.

VI. CONCLUSIONS

In this work we studied the motion of a monolayer of
elongated particles in a circular container with a vibrated
bottom. Depending on the amplitude and frequency of vibra-
tions and particle type, a variety of distinct pattern-forming
phenomena were observed, from solid-body rotation in the
system of spherical particles or cylinders to dynamic swirls
and smectic structures. We demonstrated that the overall ro-
tation of grains in the cavity was due to the presence, in
addition to vertical vibration, of a small horizontal compo-

nent of vibration predominantly in the form of an azimuthal
twisting mode. The swirl formation, which was first observed
in Ref. �15� and studied in more detail here, can be explained
by an instability that is caused by the dependence of the
bottom friction force on the particle orientation with respect
to the direction of the driving force. The relation of the fric-
tion force anisotropy and the vibration parameters can be
clarified in future studies by detailed three-dimensional cal-
culations of the motion of an elongated particle bouncing on
a vibrated plate as in Refs. �17,37�. The orientational order-
ing of grains leads to large-scale perturbations of the stress
acting on particles, which in turn affect their orientational
dynamics. Our theoretical model, based on a phenomeno-
logical equation for the alignment tensor coupled to the
equation for the particle velocity, allowed us to describe this
instability analytically. Numerical simulations of our con-
tinuum model yielded swirling patterns qualitatively similar
to experimental ones.

In this model we neglected the effects of smectic ordering
visible in our experimental data �see Figs. 1�b� and 1�c��. The
full description of grain ordering would include an additional
order parameter characterizing the local positional alignment
of grains. However, for the sake of simplicity we chose to
neglect this additional ordering and remain in the framework
of nematodynamics. Furthermore, the continuum description
implies that the correlation length of the ordered state is
much larger than the grain size. We should note that, in our
experiments, the correlation length of the local nematic order
was rather short �of the order of a grain length in the direc-
tion along the grain and 5–6 grain widths in the orthogonal
direction�, which is why our continuum description can be
valid only qualitatively. However, our description is rather
generic and can be relevant for other experimental studies
such as Ref. �15� where the nematic order is more pro-
nounced.

One of the surprising experimental observations was a
very strong sensitivity of swirling to the shape of the par-
ticles: for example, no swirling or smectic ordering was ob-
served for monodisperse metal cylindrical particles. Very
little swirling was observed for Basmati rice also. While we
do not know the exact mechanism of this strong sensitivity,
in the framework of our model this effect can be possibly
explained by variations of the effective elastic constants D1,2,
due to interlocking of particles and formation of tetratic
structures. Tetratic structures possibly possess higher rigidity
and resistance to shear, driving the system below the thresh-
old of swirling instability.

The horizontal acceleration responsible for swirling was
an unintended and uncontrolled feature of our shaker system.
It showed a strong resonant behavior near a certain vibration
frequency. This behavior is common for any mechanical
shaker system; however, in other experimental setups this
component may be smaller or larger, or it may peak at dif-
ferent oscillation frequencies. That possibly explains why
other experimental groups observed swirling motion at dif-
ferent experimental conditions �15�. A shaker system with a
controllable and tunable horizontal component of vibration
like that in Ref. �26� could provide further insight into the
nature of swirling motion.

a b

FIG. 11. Snapshots illustrating director field n �a� and velocity
field v �b� from numerical simulations of the continuum model �8�
and �14�; see also movie in �22�. Parameters in Eqs. �13� and �14�
are �=1,
0=0.2,�=3,D1=0.8,D2=0.4, F0�=1, and integration is
performed in a periodic domain of size 200�200 dimensionless
units.
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FIG. 12. rms velocity of swirling motion Vrms normalized by the
parameter F0� vs F0�. Other parameters as in Fig. 11. Inset: Vrms

vs F0�. Parameters for Eqs. �13� and �14� are periodic integration
domain size 200�200 units, �=1,
0=0.2,D2=0.4,D1=0.8,�=3.
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